
4-1

Programming Microsoft Windows with Visual Basic

4. More Exploration of the Visual Basic Toolbox

Review and Preview

· In this class, we continue looking at tools in the Visual Basic toolbox.  We will 
look at some drawing tools, scroll bars, and tools that allow direct interaction 
with drives, directories, and files.  In the examples, try to do as much of the 
building and programming of the applications you can with minimal reference 
to the notes.  This will help you build your programming skills.

Display Layers

· In this class, we will look at our first graphic type controls:  line tools, shape 
tools, picture boxes, and image boxes.  And, with this introduction, we need
to discuss the idea of display layers.

· Items shown on a form are not necessarily all on the same layer of display.  A 
form's display is actually made up of three layers as sketched below.  All 
information displayed directly on the form (by printing or drawing with 
graphics methods) appears on the bottom-layer.  Information from label 
boxes, image boxes, line tools, and shape tools, appears on the middle-
layer.  And, all other objects are displayed on the top-layer.

Bottom-layer: form
Middle-layer: label, 
image, shape, line

Top-layer: other 
controls and objects



4-2 Programming Microsoft Windows with Visual Basic

· What this means is you have to be careful where you put things on a form or 
something could be covered up.  For example, text printed on the form 
would be hidden by a command button placed on top of it.  Things drawn 
with the shape tool are covered by all controls except the image box.

· The next question then is what establishes the relative location of objects in 
the same layer.  That is, say two command buttons are in the same area of a 
form - which one lies on top of which one?  The order in which objects in the 
same layer overlay each other is called the Z-order.  This order is first 
established when you draw the form.  Items drawn last lie over items drawn 
earlier.  Once drawn, however, the Z-order can be modified by clicking on the 
desired object and choosing Bring to Front from Visual Basic's Edit menu.  
The Send to Back command has the opposite effect.  Note these two 
commands only work within a layer; middle-layer objects will always appear 
behind top-layer objects and lower layer objects will always appear behind 
middle-layer objects.

Line Tool

· The line tool creates simple straight line segments of various width and color. 
Together with the shape tool discussed next, you can use this tool to 'dress up'
your application.

· Line Tool Properties:

BorderColor Determines the line color.
BorderStyle Determines the line 'shape'.  Lines can be 

transparent, solid, dashed, dotted, and 
combinations.

BorderWidth Determines line width.

· There are no events or methods associated with the line tool.

· Since the line tool lies in the middle-layer of the form display, any lines drawn 
will be obscured by all controls except the shape tool or image box.



More Exploration of the Visual Basic Toolbox 4-3

Shape Tool

· The shape tool can create circles, ovals, squares, rectangles, and rounded 
squares and rectangles.  Colors can be used and various fill patterns are 
available.

· Shape Tool Properties:

BackColor Determines the background color of the shape 
(only used when FillStyle not Solid.

BackStyle Determines whether the background is transparent
or opaque.

BorderColor Determines the color of the shape's outline.
BorderStyle Determines the style of the shape's outline.  The 

border can be transparent, solid, dashed, dotted, 
and combinations.

BorderWidth Determines the width of the shape border line.
FillColor Defines the interior color of the shape.
FillStyle Determines the interior pattern of a shape.  Some 

choices are:  solid, transparent, cross, etc.
Shape Determines whether the shape is a square, 

rectangle, circle, or some other choice.

· Like the line tool, events and methods are not used with the shape tool.  

· Shapes are covered by all objects except perhaps line tools and image boxes 
(depends on their Z-order) and printed or drawn information.  This is a good 
feature in that you usually use shapes to contain a group of control objects and
you'd want them to lie on top of the shape.



4-4 Programming Microsoft Windows with Visual Basic

Horizontal and Vertical Scroll Bars

· Horizontal and vertical scroll bars are widely used in Windows applications.  
Scroll bars provide an intuitive way to move through a list of information and 
make great input devices.

· Both type of scroll bars are comprised of three areas that can be clicked, or 
dragged, to change the scroll bar value.  Those areas are:

Clicking an end arrow increments the scroll box a small amount, clicking the 
bar area increments the scroll box a large amount, and dragging the scroll box
(thumb) provides continuous motion.  Using the properties of scroll bars, we 
can completely specify how one works.  The scroll box position is the only 
output information from a scroll bar.

· Scroll Bar Properties:

LargeChange Increment added to or subtracted from the scroll 
bar Value property when the bar area is clicked.

Max The value of the horizontal scroll bar at the far right
and the value of the vertical scroll bar at the 
bottom.  Can range from -32,768 to 32,767.

Min The other extreme value - the horizontal scroll bar 
at the left and the vertical scroll bar at the top.  Can
range from -32,768 to 32,767.

SmallChange The increment added to or subtracted from the 
scroll bar Value property when either of the scroll 
arrows is clicked.

Value The current position of the scroll box (thumb) 
within the scroll bar.  If you set this in code, Visual 
Basic moves the scroll box to the proper position.

End arrow

Scroll box (thumb) Bar area



More Exploration of the Visual Basic Toolbox 4-5

Properties for horizontal scroll bar:

Properties for vertical scroll bar:

 

· A couple of important notes about scroll bars:

1. Note that although the extreme values are called Min and Max, they do not
necessarily represent minimum and maximum values.  There is nothing 
to keep the Min value from being greater than the Max value.  In fact, 
with vertical scroll bars, this is the usual case.  Visual Basic 
automatically adjusts the sign on the SmallChange and LargeChange 
properties to insure proper movement of the scroll box from one 
extreme to the other.

2. If you ever change the Value, Min, or Max properties in code, make sure 
Value is at all times between Min and Max or and the program will stop with
an error message.

SmallChange

SmallChange

LargeChange

LargeChange

Value

Max

Min

Min

SmallChange

SmallChangeLargeChange

LargeChangeValue

Max



4-6 Programming Microsoft Windows with Visual Basic

· Scroll Bar Events:

Change Event is triggered after the scroll box's position has
been modified.  Use this event to retrieve the Value
property after any changes in the scroll bar.

Scroll Event triggered continuously whenever the scroll 
box is being moved.



More Exploration of the Visual Basic Toolbox 4-7

Example 4-1

Temperature Conversion

Start a new project.  In this project, we convert temperatures in degrees 
Fahrenheit (set using a scroll bar) to degrees Celsius.  As mentioned in the 
Review and Preview section, you should try to build this application with minimal 
reference to the notes.  To that end, let's look at the project specifications.  

Temperature Conversion Application Specifications

The application should have a scroll bar which adjusts temperature 
in degrees Fahrenheit from some reasonable minimum to some 
maximum.  As the user changes the scroll bar value, both the 
Fahrenheit temperature and Celsius temperature (you have to 
calculate this) in integer format should be displayed.  The formula for
converting Fahrenheit (F) to Celsius (C) is:

C = (F - 32)*5/9

To convert this number to a rounded integer, use the Visual Basic 
CInt() function.  To change numeric information to strings for display
in label or text boxes, use the Str() or Format() function.  Try to build
as much of the application as possible before looking at my 
approach.  Try incorporating lines and shapes into your application if
you can.



4-8 Programming Microsoft Windows with Visual Basic

One Possible Approach to Temperature Conversion Application:

1. Place a shape, a vertical scroll bar, four labels, and a command button on the 
form.  Put the scroll bar within the shape - since it is in the top-layer of the 
form, it will lie in the shape.  It should resemble this:

2. Set the properties of the form and each object:

Form1:
BorderStyle 1-Fixed Single
Caption Temperature Conversion
Name frmTemp

Shape1:
BackColor White
BackStyle 1-Opaque
FillColor Red
FillStyle 7-Diagonal Cross
Shape 4-Rounded Rectangle

VScroll1:
LargeChange 10
Max -60
Min 120
Name vsbTemp
SmallChange 1
Value 32

Shape1



More Exploration of the Visual Basic Toolbox 4-9

Label1:
Alignment 2-Center
Caption Fahrenheit
FontSize 10
FontStyle Bold

Label2:
Alignment 2-Center
AutoSize True
BackColor White
BorderStyle 1-Fixed Single
Caption 32
FontSize 14
FontStyle Bold
Name lblTempF

Label3:
Alignment 2-Center
Caption Celsius
FontSize 10
FontStyle Bold

Label4:
Alignment 2-Center
AutoSize True
BackColor White
BorderStyle 1-Fixed Single
Caption 0
FontSize 14
FontStyle Bold
Name lblTempC

Command1:
Cancel True
Caption E&xit
Name cmdExit

Note the temperatures are initialized at 32F and 0C, known values.



4-10 Programming Microsoft Windows with Visual Basic

When done, the form should look like this:

3. Put this code in the general declarations of your code window.

Option Explicit
Dim TempF As Integer
Dim TempC As Integer
This makes the two temperature variables global.

4. Attach the following code to the scroll bar Scroll event.

Private Sub vsbTemp_Scroll()
'Read F and convert to C
TempF = vsbTemp.Value
lblTempF.Caption = Str(TempF)
TempC = CInt((TempF - 32) * 5 / 9)
lblTempC.Caption = Str(TempC)
End Sub
This code determines the scroll bar Value as it scrolls, takes that value as 
Fahrenheit temperature, computes Celsius temperature, and displays both 
values.



More Exploration of the Visual Basic Toolbox 4-11

5. Attach the following code to the scroll bar Change event.

Private Sub vsbTemp_Change()
'Read F and convert to C
TempF = vsbTemp.Value
lblTempF.Caption = Str(TempF)
TempC = CInt((TempF - 32) * 5 / 9)
lblTempC.Caption = Str(TempC)
End Sub
Note this code is identical to that used in the Scroll event.  This is almost 
always the case when using scroll bars.

6. Attach the following code to the cmdExit_Click procedure.

Private Sub cmdExit_Click()
End
End Sub

7. Give the program a try.  Make sure it provides correct information at obvious 
points.  For example, 32 F better always be the same as 0 C!  Save the project
- we’ll return to it briefly in Class 5.

Other things to try:

A. Can you find a point where Fahrenheit temperature equals Celsius 
temperature?  If you don't know this off the top of your head, it's obvious
you've never lived in extremely cold climates.  I've actually witnessed 
one of those bank temperature signs flashing degrees F and degrees C 
and seeing the same number!

B. Ever wonder why body temperature is that odd figure of 98.6 degrees F?  
Can your new application give you some insight to an answer to this 
question?

C. It might be interesting to determine how wind affects perceived temperature
- the wind chill.  Add a second scroll bar to input wind speed and display 
both the actual and wind adjusted temperatures.  You would have to do 
some research to find the mathematics behind wind chill computations.  
This is not a trivial extension of the application.



4-12 Programming Microsoft Windows with Visual Basic

Picture Boxes

· The picture box allows you to place graphics information on a form.  It is best 
suited for dynamic environments - for example, when doing animation.  

· Picture boxes lie in the top layer of the form display.  They behave very much 
like small forms within a form, possessing most of the same properties as a 
form.

· Picture Box Properties:

AutoSize If True, box adjusts its size to fit the displayed 
graphic.

Font Sets the font size, style, and size of any printing 
done in the picture box.

Picture Establishes the graphics file to display in the 
picture box.

· Picture Box Events:

Click Triggered when a picture box is clicked.
DblClick Triggered when a picture box is double-clicked.

· Picture Box Methods:

Cls Clears the picture box.
Print Prints information to the picture box.

Examples

picExample.Cls ' clears the box picExample
picExample.Print "a picture box" ' prints text string to picture box



More Exploration of the Visual Basic Toolbox 4-13

· Picture Box LoadPicture Procedure:

An important function when using picture boxes is the LoadPicture procedure.
It is used to set the Picture property of a picture box at run-time.

Example

picExample.Picture = LoadPicture("c:\pix\sample.bmp")

This command loads the graphics file c:\pix\sample.bmp into the Picture 
property of the picExample picture box.  The argument in the LoadPicture 
function must be a legal, complete path and file name, else your program will 
stop with an error message.

· Five types of graphics files can be loaded into a picture box:

Bitmap An image represented by pixels and stored as a 
collection of bits in which each bit corresponds to 
one pixel.  Usually has a .bmp extension.  Appears 
in original size.

Icon A special type of bitmap file of maximum 32 x 32 
size.  Has a .ico extension.  We’ll create icon files 
in Class 5.  Appears in original size.

Metafile A file that stores an image as a collection of 
graphical objects (lines, circles, polygons) rather 
than pixels.  Metafiles preserve an image more 
accurately than bitmaps when resized.  Has a .wmf
extension.  Resizes itself to fit the picture box area.

JPEG JPEG (Joint Photographic Experts Group) is a 
compressed bitmap format which supports 8 and 24
bit color.  It is popular on the Internet.  Has a .jpg 
extension and scales nicely.

GIF GIF (Graphic Interchange Format) is a compressed
bitmap format originally developed by CompuServe.
It supports up to 256 colors and is popular on the 
Internet.  Has a .gif extension and scales nicely.



4-14 Programming Microsoft Windows with Visual Basic

Image Boxes

· An image box is very similar to a picture box in that it allows you to place 
graphics information on a form.  Image boxes are more suited for static 
situations - that is, cases where no modifications will be done to the 
displayed graphics.

· Image boxes appear in the middle-layer of form display, hence they could be 
obscured by picture boxes and other objects.  Image box graphics can be 
resized by using the Stretch property.

· Image Box Properties:

Picture Establishes the graphics file to display in the image 
box.

Stretch If False, the image box resizes itself to fit the 
graphic.  If True, the graphic resizes to fit the 
control area.

· Image Box Events:

Click Triggered when a image box is clicked.
DblClick Triggered when a image box is double-clicked.

· The image box does not support any methods, however it does use the 
LoadPicture function.  It is used in exactly the same manner as the picture 
box uses it.  And image boxes can load the same file types:  bitmap (.bmp), 
icon (.ico), metafiles (.wmf), GIF files (.gif), and JPEG files (.jpg).  With Stretch 
= True, all three graphic types will expand to fit the image box area.

Quick Example:  Picture and Image Boxes

1. Start a new project.  Draw one picture box and one image box.

2. Set the Picture property of the picture and image box to the same file.  Bitmap
files can be found in the c:\vb\bitmaps directory, icon files in the c:\vb\icons 
directory, and metafiles are in the c:\vb\metafile directory.

3. Notice what happens as you resize the two boxes.  Notice the layer affect 
when you move one box on top of the other.  Notice the effect of the image 
box Stretch property.  Play around with different file types - what differences 
do you see?



More Exploration of the Visual Basic Toolbox 4-15

Drive List Box

· The drive list box control allows a user to select a valid disk drive at run-time. 
It displays the available drives in a drop-down combo box.  No code is 
needed to load a drive list box; Visual Basic does this for us.  We use the 
box to get the current drive identification.

· Drive List Box Properties:

Drive Contains the name of the currently selected drive.

· Drive List Box Events:

Change Triggered whenever the user or program changes 
the drive selection.

Directory List Box

· The directory list box displays an ordered, hierarchical list of the user's disk 
directories and subdirectories.  The directory structure is displayed in a list 
box.  Like, the drive list box, little coding is needed to use the directory list 
box - Visual Basic does most of the work for us.

· Directory List Box Properties:

Path Contains the current directory path.

· Directory List Box Events:

Change Triggered when the directory selection is changed.



4-16 Programming Microsoft Windows with Visual Basic

File List Box

· The file list box locates and lists files in the directory specified by its Path 
property at run-time.  You may select the types of files you want to display in 
the file list box.

· File List Box Properties:

FileName Contains the currently selected file name.
Path Contains the current path directory.
Pattern Contains a string that determines which files will be 

displayed.  It supports the use of * and ? wildcard 
characters.  For example, using *.dat only displays 
files with the .dat extension.

· File List Box Events:

DblClick Triggered whenever a file name is double-clicked.
PathChange Triggered whenever the path changes in a file list 

box.

· You can also use the MultiSelect property of the file list box to allow multiple 
file selection.



More Exploration of the Visual Basic Toolbox 4-17

Synchronizing the Drive, Directory, and File List Boxes

· The drive, directory, and file list boxes are almost always used together to 
obtain a file name.  As such, it is important that their operation be 
synchronized to insure the displayed information is always consistent.

· When the drive selection is changed (drive box Change event), you should 
update the directory path.  For example, if the drive box is named 
drvExample and the directory box is dirExample, use the code:

dirExample.Path = drvExample.Drive

· When the directory selection is changed (directory box Change event), you 
should update the displayed file names.  With a file box named filExample, 
this code is:

filExample.Path = dirExample.Path

· Once all of the selections have been made and you want the file name, you 
need to form a text string that correctly and completely specifies the file 
identifier.  This string concatenates the drive, directory, and file name 
information.  This should be an easy task, except for one problem.  The 
problem involves the backslash (\) character.  If you are at the root 
directory of your drive, the path name ends with a backslash.  If you are not
at the root directory, there is no backslash at the end of the path name and 
you have to add one before tacking on the file name.  

· Example code for concatenating the available information into a proper file 
name and then loading it into an image box is:

Dim YourFile as String

If Right(filExample.Path,1) = "\" Then
  YourFile = filExample.Path + filExample.FileName
Else
  YourFile = filExample.Path + "\" + filExample.FileName
End If
imgExample.Picture = LoadPicture(YourFile)

Note we only use properties of the file list box.  The drive and directory box 
properties are only used to create changes in the file list box via code.



4-18 Programming Microsoft Windows with Visual Basic

Example 4-2

Image Viewer

Start a new project.  In this application, we search our computer's file structure for 
graphics files and display the results of our search in an image box.

Image Viewer Application Specifications

Develop an application where the user can search and find graphics 
files (*.ico, *.bmp, *.wmf) on his/her computer.  Once a file is 
selected, print the corresponding file name on the form and display 
the graphic file in an image box using the LoadPicture() function.



More Exploration of the Visual Basic Toolbox 4-19

One possible solution to the Image Viewer Application:

1.  Place a drive list box, directory list box, file list box, four label boxes, a line 
(use the line tool) and a command button on the form.  We also want to 
add an image box, but make it look like it's in some kind of frame.  Build 
this display area in these steps:  draw a 'large shape', draw another shape 
within this first shape that is the size of the image display area, and lastly, 
draw an image box right on top of this last shape.  Since the two shapes 
and image box are in the same display layer, the image box is on top of the
second shape which is on top of the first shape, providing the desired effect
of a kind of picture frame.  The form should look like this:

Note the second shape is directly beneath the image box.

2. Set properties of the form and each object.

Form1:
BorderStyle 1-Fixed Single
Caption Image Viewer
Name frmImage

Drive1:
Name drvImage

Dir1:
Name dirImage

Line1

Image1

Shape1

Shape2



4-20 Programming Microsoft Windows with Visual Basic

File1:
Name filImage
Pattern *.bmp;*.ico;*.wmf;*gif;*jpg 

[type this line with no spaces]

Label1:
Caption [Blank]
BackColor Yellow
BorderStyle 1-Fixed Single
Name lblImage

Label2:
Caption Files:

Label3:
Caption Directories:

Label4:
Caption Drives:

Command1:
Caption &Show Image
Default True
Name cmdShow

Command2:
Cancel True
Caption E&xit
Name cmdExit

Line1:
BorderWidth 3

Shape1:
BackColor Cyan
BackStyle 1-Opaque
FillColor Blue
FillStyle 4-Upward Diagonal
Shape 4-Rounded Rectangle

Shape2:
BackColor White
BackStyle 1-Opaque



More Exploration of the Visual Basic Toolbox 4-21

Image1:
BorderStyle 1-Fixed Single
Name imgImage
Stretch True

3. Attach the following code to the drvImage_Change procedure.

Private Sub drvImage_Change()
'If drive changes, update directory
dirImage.Path = drvImage.Drive
End Sub
When a new drive is selected, this code forces the directory list box to 
display directories on that drive.

4. Attach this code to the dirImage_Change procedure.

Private Sub dirImage_Change()
'If directory changes, update file path
filImage.Path = dirImage.Path
End Sub
Likewise, when a new directory is chosen, we want to see the files on that 
directory.

5. Attach this code to the cmdShow_Click event.

Private Sub cmdShow_Click()
'Put image file name together and
'load image into image box
Dim ImageName As String
'Check to see if at root directory
If Right(filImage.Path, 1) = "\" Then
  ImageName = filImage.Path + filImage.filename
Else
  ImageName = filImage.Path + "\" + filImage.filename
End If
lblImage.Caption = ImageName
imgImage.Picture = LoadPicture(ImageName)
End Sub
This code forms the file name (ImageName) by concatenating the directory
path with the file name.  It then displays the complete name and loads the 
picture into the image box.



4-22 Programming Microsoft Windows with Visual Basic

6. Copy the code from the cmdShow_Click procedure and paste it into the 
filImage_DblClick procedure.  The code is identical because we want to 
display the image either by double-clicking on the filename or clicking the 
command button once a file is selected.  Those of you who know how to 
call routines in Visual Basic should note that this duplication of code is 
unnecessary - we could simply have the filImage_DblClick procedure call 
the cmdShow_Click procedure.  We’ll learn more about this next class.

7. Attach this code to the cmdExit_Click procedure.

Private Sub cmdExit_Click()
End
End Sub

8. Save your project.  Run and try the application.  Find bitmaps, icons, and 
metafiles.  Notice how the image box Stretch property affects the different 
graphics file types.  Here’s how the form should look when displaying one 
example metafile:



More Exploration of the Visual Basic Toolbox 4-23

Common Dialog Boxes

· The primary use for the drive, directory, and file name list boxes is to develop 
custom file access routines.  Two common file access routines in Windows-
based applications are the Open File and Save File operations.  
Fortunately, you don’t have to build these routines.

· To give the user a standard interface for common operations in Windows-
based applications, Visual Basic provides a set of common dialog boxes, 
two of which are the Open and Save As dialog boxes.  Such boxes are 
familiar to any Windows user and give your application a professional look. 
And, with Windows 95, some context-sensitive help is available while the 
box is displayed.  Appendix II lists many symbolic constants used with 
common dialog boxes.

· The Common Dialog control is a ‘custom control’ which means we have to 
make sure some other files are present to use it.  In normal setup 
configurations, Visual Basic does this automatically.  If the common dialog 
box does not appear in the Visual Basic toolbox, you need to add it.  This is
done by selecting Components under the Project menu.  When the 
selection box appears, click on Microsoft Common Dialog Control, then 
click OK.

· The common dialog tool, although it appears on your form, is invisible at run-
time.  You cannot control where the common dialog box appears on your 
screen.  The tool is invoked at run-time using one of five ‘Show’ methods.  
These methods are:

Method Common Dialog Box
ShowOpen Open dialog box
ShowSave Save As dialog box
ShowColor Color dialog box
ShowFont Font dialog box
ShowPrinter Printer dialog box

· The format for establishing a common dialog box named cdlExample so that 
an Open box appears is:

cdlExample.ShowOpen

Control to the program returns to the line immediately following this line, 
once the dialog box is closed in some manner.  Common dialog boxes are 
system modal.



4-24 Programming Microsoft Windows with Visual Basic

· Learning proper use of all the common dialog boxes would require an 
extensive amount of time.  In this class, we’ll limit ourselves to learning the 
basics of getting file names from the Open and Save As boxes in their default 
form.

Open Common Dialog Box

· The Open common dialog box provides the user a mechanism for specifying 
the name of a file to open. We’ll worry about how to open a file in Class 6.  The
box is displayed by using the ShowOpen method.  Here’s an example of an 
Open common dialog box:

· Open Dialog Box Properties:

CancelError If True, generates an error if the Cancel button is 
clicked.  Allows you to use error-handling 
procedures to recognize that Cancel was clicked.

DialogTitle The string appearing in the title bar of the dialog 
box.  Default is Open.  In the example, the 
DialogTitle is Open Example.

FileName Sets the initial file name that appears in the File 
name box.  After the dialog box is closed, this 
property can be read to determine the name of the 
selected file.



More Exploration of the Visual Basic Toolbox 4-25

Filter Used to restrict the filenames that appear in the file 
list box.  Complete filter specifications for forming a 
Filter can be found using on-line help.  In the 
example, the Filter was set to allow Bitmap (*.bmp),
Icon (*.ico), Metafile (*.wmf), GIF (*.gif), and JPEG 
(*.jpg) types (only the Bitmap choice is seen).

FilterIndex Indicates which filter component is default.  The 
example uses a 1 for the FilterIndex (the default 
value).

Flags Values that control special features of the Open 
dialog box (see Appendix II).  The example uses no
Flags value.

· When the user closes the Open File box, you should check the returned file 
name to make sure it meets the specifications your application requires before 
you try to open the file.

Quick Example:  The Open Dialog Box

1. Start a new project.  Place a common dialog control, a label box, and a 
command button on the form.  Set the following properties:

Form1:
Caption Common Dialog Examples
Name frmCommon

CommonDialog1:
DialogTitle Open Example
Filter Bitmaps (*.bmp)|*.bmp|

Icons (*.ico)|*.ico|Metafiles (*.wmf)|*.wmf
GIF Files (*.gif)|*.gif|JPEG Files (*,jpg)|*.jpg
(all on one line)

Name cdlExample

Label1:
BorderStyle 1-Fixed Single
Caption [Blank]
Name lblExample

Command1:
Caption &Display Box
Name cmdDisplay



4-26 Programming Microsoft Windows with Visual Basic

When done, the form should look like this (make sure your label box is very
long):

2. Attach this code to the cmdDisplay_Click procedure.

Private Sub cmdDisplay_Click()
cdlExample.ShowOpen
lblExample.Caption = cdlExample.filename
End Sub
This code brings up the Open dialog box when the button is clicked and shows
the file name selected by the user once it is closed.

3. Save the application.  Run it and try selecting file names and typing file names.
Notice names can be selected by highlighting and clicking the OK button or
just by double-clicking the file name.  In this example, clicking the Cancel 
button is not trapped, so it has the same effect as clicking OK.  

4. Notice once you select a file name, the next time you open the dialog box, that 
selected name appears as default, since the FileName property is not affected 
in code.



More Exploration of the Visual Basic Toolbox 4-27

Save As Common Dialog Box

· The Save As common dialog box provides the user a mechanism for 
specifying the name of a file to save. We’ll worry about how to save a file in 
Class 6.  The box is displayed by using the ShowSave method..  Here’s an 
example of a Save As common dialog box:

· Save As Dialog Box Properties (mostly the same as those for the Open box):

CancelError If True, generates an error if the Cancel button is 
clicked.  Allows you to use error-handling 
procedures to recognize that Cancel was clicked.

DefaultExt Sets the default extension of a file name if a file is 
listed without an extension.

DialogTitle The string appearing in the title bar of the dialog 
box.  Default is Save As.  In the example, the 
DialogTitle is Save As Example.

FileName Sets the initial file name that appears in the File 
name box.  After the dialog box is closed, this 
property can be read to determine the name of the 
selected file.

Filter Used to restrict the filenames that appear in the file 
list box.

FilterIndex Indicates which filter component is default.
Flags Values that control special features of the dialog 

box (see Appendix II).



4-28 Programming Microsoft Windows with Visual Basic

· The Save File box is commonly configured in one of two ways.  If a file is being
saved for the first time, the Save As configuration, with some default name 
in the FileName property, is used.  In the Save configuration, we assume a 
file has been previously opened with some name.  Hence, when saving the 
file again, that same name should appear in the FileName property.  
You’ve seen both configuration types before.

· When the user closes the Save File box, you should check the returned file 
name to make sure it meets the specifications your application requires 
before you try to save the file.  Be especially aware of whether the user 
changed the file extension to something your application does not allow.

Quick Example:  The Save As Dialog Box

1. We’ll just modify the Open example a bit.  Change the DialogTitle property of 
the common dialog control to “Save As Example” and set the DefaultExt 
property equal to “bmp”.

2. In the cmdDisplay_Click procedure, change the method to ShowSave 
(opens Save As box).

3. Save the application and run it.  Try typing names without extensions and note 
how .bmp is added to them.  Notice you can also select file names by 
double-clicking them or using the OK button.  Again, the Cancel button is 
not trapped, so it has the same effect as clicking OK.  



More Exploration of the Visual Basic Toolbox 4-29

Exercise 4

Student Database Input Screen

You did so well with last week’s assignment that, now, a school wants you to 
develop the beginning structure of an input screen for its students.  The required 
input information is:

1. Student Name
2. Student Grade (1 through 6)
3. Student Sex (Male or Female)
4. Student Date of Birth (Month, Day, Year)
5. Student Picture (Assume they can be loaded as bitmap files)

Set up the screen so that only the Name needs to be typed; all other inputs should
be set with option buttons, scroll bars, and common dialog boxes.  When a screen
of information is complete, display the summarized profile in a message box.  This
profile message box should resemble this:

Note the student’s age must be computed from the input birth date - watch out for 
pitfalls in doing the computation.  The student’s picture does not appear in the 
profile, only on the input screen.



4-30 Programming Microsoft Windows with Visual Basic

My Solution:

Form:

Properties:

Form frmStudent:
BorderStyle = 1- Fixed Single
Caption = Student Profile

CommandButton cmdLoad:
Caption = &Load Picture

Frame Frame3:
Caption = Picture
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

txtName

Label1

optLevelFrame4

Frame2

optSex

lblMonth lblDay lblYear Frame1

Frame3

imgStuden
t

cmdLoa
d

vsbMonth

vsbDay

vsbYear

cmdShow cmdNew cmdExit

cdlBox



More Exploration of the Visual Basic Toolbox 4-31

Image imgStudent:
BorderStyle = 1 - Fixed Single
Stretch = True

CommandButton cmdExit:
Caption = E&xit

CommandButton cmdNew:
Caption = &New Profile

CommandButton cmdShow:
Caption = &Show Profile

Frame Frame4:
Caption = Grade Level
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

OptionButton optLevel:
Caption = Grade 6
Index = 5

OptionButton optLevel:
Caption = Grade 5
Index = 4

OptionButton optLevel:
Caption = Grade 4
Index = 3

OptionButton optLevel:
Caption = Grade 3
Index = 2

OptionButton optLevel:
Caption = Grade 2
Index = 1

OptionButton optLevel:
Caption = Grade 1
Index = 0



4-32 Programming Microsoft Windows with Visual Basic

Frame Frame2:
Caption = Sex
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

OptionButton optSex:
Caption = Female
Index = 1

OptionButton optSex:
Caption = Male
Index = 0

Frame Frame1:
Caption = Date of Birth
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

VScrollBar vsbYear:
Max = 1800
Min = 2100
Value = 1960

VScrollBar vsbDay:
Max = 1
Min = 31
Value = 1

VScrollBar vsbMonth:
Max = 1
Min = 12
Value = 1

Label lblYear:
Alignment = 2 - Center
BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 10.8



More Exploration of the Visual Basic Toolbox 4-33

Label lblDay:
Alignment = 2 - Center
BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 10.8

Label lblMonth:
Alignment = 2 - Center
BackColor = &H00FFFFFF& (White)
BorderStyle = 1 - Fixed Single
FontName = MS Sans Serif
FontSize = 10.8

TextBox txtName:
FontName = MS Sans Serif
FontSize = 10.8

CommonDialog cdlBox:
Filter = Bitmaps (*.bmp)|*.bmp

Label Label1:
Caption = Name
FontName = MS Sans Serif
FontBold = True
FontSize = 9.75
FontItalic = True

Code:

General Declarations:

Option Explicit
Dim Months(12) As String
Dim Days(12) As Integer
Dim Grade As String

cmdExit Click Event:

Private Sub cmdExit_Click()
End
End Sub



4-34 Programming Microsoft Windows with Visual Basic

cmdLoad Click Event:

Private Sub cmdLoad_Click()
cdlbox.ShowOpen
imgStudent.Picture = LoadPicture(cdlbox.filename)
End Sub

cmdNew Click Event:

Private Sub cmdNew_Click()
'Blank out name and picture
txtName.Text = ""
imgStudent.Picture = LoadPicture("")
End Sub

cmdShow Click Event:

Private Sub cmdShow_Click()
Dim Is_Leap As Integer
Dim Msg As String, Age As Integer, Pronoun As String
Dim M As Integer, D As Integer, Y As Integer

'Check for leap year and if February is current month
If vsbMonth.Value = 2 And ((vsbYear.Value Mod 4 = 0 And 
vsbYear.Value Mod 100 <> 0) Or vsbYear.Value Mod 400 = 0) 
Then
  Is_Leap = 1
Else
  Is_Leap = 0
End If
'Check to make sure current day doesn't exceed number of days
in month
If vsbDay.Value > Days(vsbMonth.Value) + Is_Leap Then
  MsgBox "Only" + Str(Days(vsbMonth.Value) + Is_Leap) + " 
days in " + Months(vsbMonth.Value), vbOKOnly + vbCritical, 
"Invalid Birth Date"
  Exit Sub
End If
'Get current date to compute age
M = Val(Format(Now, "mm"))
D = Val(Format(Now, "dd"))
Y = Val(Format(Now, "yyyy"))
Age = Y - vsbYear
If vsbMonth.Value > M Or (vsbMonth.Value = M And vsbDay > D) 
Then Age = Age - 1



More Exploration of the Visual Basic Toolbox 4-35

'Check for valid age
If Age < 0 Then
  MsgBox "Birth date is before current date.", vbOKOnly + 
vbCritical, "Invalid Birth Date"
  Exit Sub
End If

'Check to make sure name entered
If txtName.Text = "" Then
  MsgBox "The profile requires a name.", vbOKOnly + 
vbCritical, "No Name Entered"
  Exit Sub
End If

'Put together student profile message
Msg = txtName.Text + " is a student in the " + Grade + " 
grade." + vbCr
If optSex(0).Value = True Then Pronoun = "He " Else Pronoun =
"She "
Msg = Msg + Pronoun + " is" + Str(Age) + " years old." + vbCr
MsgBox Msg, vbOKOnly, "Student Profile"
End Sub

Form Load Event:

Private Sub Form_Load()
'Set arrays for dates and initialize labels
Months(1) = "January": Days(1) = 31
Months(2) = "February": Days(2) = 28
Months(3) = "March": Days(3) = 31
Months(4) = "April": Days(4) = 30
Months(5) = "May": Days(5) = 31
Months(6) = "June": Days(6) = 30
Months(7) = "July": Days(7) = 31
Months(8) = "August": Days(8) = 31
Months(9) = "September": Days(9) = 30
Months(10) = "October": Days(10) = 31
Months(11) = "November": Days(11) = 30
Months(12) = "December": Days(12) = 31
lblMonth.Caption = Months(vsbMonth.Value)
lblDay.Caption = Str(vsbDay.Value)
lblYear.Caption = Str(vsbYear.Value)
Grade = "first"
End Sub



4-36 Programming Microsoft Windows with Visual Basic

optLevel Click Event:

Private Sub optLevel_Click(Index As Integer)
Select Case Index
Case 0
   Grade = "first"
Case 1
   Grade = "second"
Case 2
   Grade = "third"
Case 3
   Grade = "fourth"
Case 4
   Grade = "fifth"
Case 5
   Grade = "sixth"
End Select
End Sub

vsbDay Change Event:

Private Sub vsbDay_Change()
lblDay.Caption = Str(vsbDay.Value)
End Sub

vsbMonth Change Event:

Private Sub vsbMonth_Change()
lblMonth.Caption = Months(vsbMonth.Value)
End Sub

vsbYear Change Event:

Private Sub vsbYear_Change()
lblYear.Caption = Str(vsbYear.Value)
End Sub


